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Abstract. We introduce two new methods that are designed to improve the realism and util-
ity of large, active region-scale 3D MHD models of the solar atmosphere. We apply these
methods to RADMHD, a code capable of modeling the Sun’s upper convection zone, pho-
tosphere, chromosphere, transition region, and corona within a single computational vol-
ume. We first present a way to approximate the physics of optically-thick radiative transfer
without having to take the computationally expensive step of solving the radiative transfer
equation in detail. We then briefly describe a rudimentary assimilative technique that allows
a time series of vector magnetograms to be directly incorporated into the MHD system.
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1. Introduction

In this paper, we briefly summarize our ef-
forts to improve our models of quiet Sun
and active region magnetic fields in computa-
tional domains that include the upper convec-
tion zone, photosphere, chromosphere, transi-
tion region and low corona within a single
computational domain. Our goal is similar to
that presented in Abbett (2007) – that is, to
develop the techniques necessary to efficiently
simulate the spatially and temporally disparate
convection zone-to-corona interface over spa-
tial scales sufficiently large to accommodate at
least one active region.

The advantage of this type of single-
domain modeling is clear. For example, evolv-
ing a turbulent convection zone and corona
simultaneously in a physically self-consistent
way allows for the quantitative study of impor-
tant physical processes such as flux emergence,
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submergence and cancellation; the transport of
magnetic free energy and helicity into the solar
atmosphere; the generation of magnetic fields
via a convective dynamo; and the physics of
coronal heating.

However, this approach is challenging. The
computational domain is highly stratified –
average thermodynamic quantities change by
many orders of magnitude as the domain
transitions from a relatively cool, turbulent
regime below the visible surface, to a hot,
magnetically-dominated and shock-dominated
regime high in the model atmosphere. In ad-
dition, the low atmosphere is where the ra-
diation field transitions from being optically
thick to optically thin. The chromosphere itself
presents an additional challenge, since the ra-
diation field is often decoupled from the ther-
mal pool, particularly in some of the strongest,
most energetically important transitions.

There are a number of ways to model the
energetics of the convection zone-to-corona
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system, ranging from approximate, parameter-
ized descriptions of the thermodynamics (see
e. g., Fan 2009; Hood et al. 2009), to highly re-
alistic treatments of radiative transfer (see e. g.,
Martı́nez-Sykora et al. 2009a,b). Since our ob-
jective is to model the coupled system over
large spatial scales, our goal is to find the most
efficient treatment of the energetics possible
that still provides a physically meaningful rep-
resentation of the dynamic connection between
the convection zone and corona.

In order to describe the thermodynamics
of the corona, a model should include the
effects of electron thermal conduction along
magnetic field lines and radiative cooling in the
optically-thin limit. In addition, some physics-
based or empirically-based source of coronal
heating must be present if the model corona is
to remain hot. In the convective interior well
below the visible surface, radiative cooling can
be treated in the diffusion limit. The trick is,
how best to describe the effects of optically-
thick radiative transfer in the region of the
model atmosphere that lies between these two
extremes.

The most satisfying approach would be to
couple the LTE transfer equation (or non-LTE
population and transfer equations) to the MHD
system to obtain cooling rates and intensities
that could be compared directly to observa-
tions. Unfortunately, for large active region or
global-scale problems, the computational ex-
pense of these techniques remains prohibitive.

In Abbett (2007) we tried the opposite
approach – ignore the transfer equation alto-
gether, and develop an artificial, fully param-
eterized means of approximating surface cool-
ing (in this case, we employed a modified form
of Newton cooling). This worked relatively
well, provided we carefully calibrated the ad-
justable parameters to match the average sub-
surface stratification of previous, more realis-
tic simulations of magneto-convection where
the LTE transfer equation was solved in detail
(Bercik 2002).

Of course, the principle drawback of this
approach is that it is ultimately ad hoc and
unphysical, and requires other, more realistic
simulations as a basis for calibration in order to
get meaningful results. We therefore have de-

veloped an approximation that is based on the
macroscopic radiative transfer equation, and
have incorporated this new treatment into our
3D MHD model, RADMHD. We describe this
new method in Section 2.

While it is important to treat the energetics
of the system in a physically meaningful way,
it is also important to remember that the utility
of a given simulation ultimately depends on the
statement of the problem. For an MHD simu-
lation, this boils down to one’s choice of initial
states and boundary conditions. It is of great
benefit, for example, to pose a simple, well-
defined problem, and set up a numerical exper-
iment that can shed light on what is believed to
be the relevant physical processes in an other-
wise complex system. For example, important
progress has been made in understanding the
physics of magnetic flux emergence by study-
ing how idealized twisted flux ropes emerge
through highly-stratified model atmospheres
(see e.g., Cheung et al. 2007; Fan & Gibson
2004).

Yet the observed evolution of the photo-
spheric magnetic field is often far more com-
plex, particularly in and around CME and flare
producing active regions. It is very difficult to
set up a simple magnetic and energetic con-
figuration that can initialize a simulation that
will faithfully mimic the observed evolution of
a real active region. It is desirable to do so,
however, since we wish to quantitatively un-
derstand the physical mechanisms of energy
storage and release, and the transport of mag-
netic energy and helicity between the convec-
tive interior and corona.

To make progress, we could take a cue
from meteorologists, and investigate a means
to incorporate observational data directly into
MHD models. This is not at all straightfor-
ward for solar models however, since data is
obtained entirely through remote sensing, and
not in situ.

To address this challenge, we have devel-
oped a simple, rudimentary means of assimilat-
ing a time series of vector magnetograms into
an MHD model of the photosphere-to-corona
system. We briefly summarize this technique in
Section 3, and apply it to the specific problem
of finding a 3D magnetic field that is as force-
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Fig. 1. Shown is a comparison of the average
temperature stratification between the realistic ra-
diative magneto-convection simulations of Bercik
(2002) (crosses), and the RADMHD model convec-
tion zone using the new treatment of optically-thick
transfer (diamonds).

free as possible given a single measurement of
the vector magnetic field at the photosphere.

2. An approximate treatment of
optically thick cooling

What follows is a brief description of our ap-
proximate treatment of optically-thick radia-
tive cooling in the portion of the computational
domain that represents the solar photosphere
and chromosphere. In practice, this cooling is
incorporated into the MHD system as a source
term in the equation that evolves the internal
energy per unit volume (Eq. 4 of Abbett 2007).

We begin by characterizing the net cooling
rate for a volume of plasma at some location
within the solar atmosphere:

R =

∫
dΩ

∫
dν (ην − κνIν) . (1)

Here, ν represents frequency, and Ω solid an-
gle. The emissivity, opacity, and specific in-
tensity are frequency dependent, and are de-
noted ην, κν , and Iν respectively. Rearranging
the order of integration, and defining the source
function S ν as the ratio of the emissivity to
opacity, we have

R =

∫
dν κν

∫
dΩ (S ν − Iν) . (2)

Since the source function is independent of di-
rection, we recast the integral as

R = 4π
∫

dν κν (S ν − Jν) (3)

with mean intensity

Jν ≡ 1
4π

∫
dΩ Iν. (4)

The formal solution for the specific intensity in
the plane-parallel approximation is

Iν(µ) =

∫ ∞

0
dτ′

e−|τν−τ
′ |/|µ|

|µ| S ν(τ′), (5)

where µ is the usual cosine angle. Then the
mean intensity can be expressed as

Jν =
1
2

∫ ∞

0
dτ′S ν(τ′)

∫ 1

0
d |µ|e

−|τν−τ′ |/|µ|

|µ| . (6)

The integral over µ can now be evaluated and
the mean intensity can be cast as

Jν =
1
2

∫ ∞

0
dτ′S ν(τ′)E1(|τν − τ′|), (7)

where E1 denotes the first exponential integral.
So far, this is simply textbook radiative trans-
fer (e. g., Mihalas 1978). No approximations
have yet to be made, other than an assumption
of a locally plane-parallel atmosphere. Now
we’ll make our first approximation. Note that
E1(|τν − τ′|) is singular when τ′ = τν, and that
the singularity is integrable. Since E1 is peaked
around τν, contributions from S ν(τ′) will be
centered around S ν(τν). Thus, we approximate
the mean intensity by

Jν ≈ 1
2

S ν(τν)
∫ ∞

0
dτ′E1(|τν − τ′|). (8)

This integral can then be evaluated, giving a
simple expression for the mean intensity,

Jν ≈ S ν(τν)
(
1 − E2(τν)

2

)
, (9)

where E2 refers to the second exponential inte-
gral. Note that this can be rewritten in the fol-
lowing way:

1 − Jν
S ν
≈ E2(τν)

2
. (10)
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Fig. 2. The temperature along a horizontal slice through a RADMHD model photosphere during the relax-
ation process. This simulation uses the ad hoc Newton cooling described in Abbett (2007) to approximate
optically-thick surface cooling. The slice spans 75 × 37.5 Mm2.

We now return to our expression for the net
cooling rate and recast it in a slightly different
form,

R = 4π
∫

dν κνS ν

(
1 − Jν

S ν

)
. (11)

Substituting Eq. 10 into the integrand, we have

R ≈ 2π
∫

dν κνS νE2(τν). (12)

If we further assume LTE, the source function
is simply the Planck function and we have

R ≈ 2π
∫

dν κνBν(T )E2(τν). (13)

Now for the real swindle! Let’s integrate
over frequency, and replace the frequency-
dependent opacity by its Planck weighted
mean value: That is, replace κνBν with
κ(σ/π)T 4 where κ represents a Planck-
weighted mean opacity, and σ the Stefan-
Boltzmann constant. Then including the expo-
nential function in the average over frequency,
we find that

R ≈ 2C κσT 4E2(ατ). (14)

Here, C represents the normalization constant
for the integration. The arbitrary constant α ap-
pears in the exponential integral since the mean
opacity used in the calculation of the optical
depth scale could differ in general from the
mean opacity that appears by itself in the in-
tegrand.

To determine the normalization constant C,
we integrate our cooling function from zero to
infinity over an isothermal slab to obtain the
total radiative flux. The resulting expression
must be equal to the known result Ftot = σT 4.
This allows us to determine the normalization
constant C = α. To evaluate α, we compare
the detailed cooling rate depth distribution us-
ing this formulation with the cooling rate in the
Bercik (2002) LTE model of the solar atmo-
sphere, and conclude the best-fit value is α = 1
(See Figure 1). Thus, our approximate cooling
function takes the form:

R ≈ 2 κσT 4E2(τ). (15)

The advantage of this treatment lies in its sim-
plicity. The above approximation for surface
cooling, while non-linear, is trivial to calcu-
late for each mesh element. It is certainly more
physical than the ad hoc treatment employed
in Abbett (2007), since it is based on the ra-



Abbett & Fisher: Improving large-scale models 725

Fig. 3. The temperature along a horizontal slice through a RADMHD model photosphere during the relax-
ation process. In this case, we use our new treatment to approximate the optically-thick surface cooling. We
note that the model convection zone has yet to fully relax.

diative transfer equation, and incorporates an
optical depth scale into the model. Further, it
has no adjustable parameters. The only cal-
ibration now required is a choice of optical
depth ranges over which to apply the different
approximations. Currently, we use the radia-
tive diffusion approximation for optical depths
greater than 10, an expression for radiative
cooling in the optically-thin limit for optical
depths less than 0.1, and the above treatment
in the intervening layers.

Figures 2 and 3 provide a qualitative com-
parison between a model convection zone gen-
erated using the ad hoc approach of Abbett
(2007) to estimate the effects of optically-thick
radiative surface cooling, and one that utilizes
the approximation described above. The im-
ages represent the gas temperature along a
horizontal slice through a RADMHD model
photosphere during the relaxation process.
Both simulations used the same initial convec-
tive state and boundary conditions (periodic
in the horizontal directions and closed verti-
cally); the only difference is the treatment of
the optically-thick transfer. Distinct differences
rapidly develop – the convective cells become
more irregularly shaped while the size distri-
bution of cells begins to more closely mimic

that of the more realistic simulations of Bercik
(2002).

However, there are irregularities in the cur-
rent data set. For example, there are regions
within the intergranular lanes that are hotter
than expected. This may be an artifact result-
ing from our empirically-based coronal heat-
ing function (see Abbett 2007 for details) ex-
tending unphysically deep into the atmosphere
(i. e., its optical depth cutoff is too high), or
it may simply be a transient effect that will
subside as the simulation progresses. This is a
work in progress, and we continue to test and
validate the new treatment against our previous
quiet Sun simulations, and against more real-
istic magnetoconvection simulations that treat
the LTE transfer equation in detail.

3. Rudimentary data assimilation

We now turn our attention to the problem of
incorporating a time series of vector magnetic
field measurements into our MHD model of
the solar atmosphere. The essential problem
is that even the most carefully pre-processed
sequences of vector magnetograms cannot be
expected to exactly satisfy Faraday’s law, and
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thus are physically inconsistent from the point
of view of the numerical model.

This is not particularly surprising, since
it is a non-trivial task to properly transform
polarization measurements into a vector mag-
netic field. The datasets naturally suffer from
the effects of uncertainty due to noise, see-
ing, or saturation; the inversion process itself is
model dependent; and the well-known 180 de-
gree ambiguity in the transverse field must be
resolved in the context of a timeseries of mag-
netograms rather than in a single magnetogram
in isolation.

While the data itself presents challenges, it
is important to remember that the model suffers
from fundamental deficiencies of its own. The
single-fluid MHD system may not capture the
essential physics of the solar atmosphere, par-
ticularly in the low atmosphere where effects
such as non-LTE transfer, ion-neutral diffu-
sion, magnetic reconnection, and non-thermal
partical acceleration may play fundamental
roles in the dynamic evolution of a given re-
gion.

Then how shall we proceed? One approach
is to take the data at face value and incorpo-
rate the measurements directly into an MHD
model in the form of time-dependent, charac-
teristic boundary conditions (Wu et al. 2006).
Here, one must be mindful to not over-specify
the MHD system. This method is restrictive
in that only certain components of the electric
field or flow inferred from the data can be used
to drive the simulation. In addition, one must
make assumptions about the thermodynamics
of the system in order to drive the model atmo-
sphere in a physical way.

Here, we take another approach. To avoid
the mathematical constraints inherent to MHD
boundary conditions, we push our lower
boundary slightly deeper into the photosphere
and instead incorporate the data into the model
via additional forces acting on active zones of
the calculation where the entire MHD system
is being self-consistently evolved.

To do this, we must first obtain an in-
ductive flow field from a given time series
of magnetograms that is both consistent with
the observed evolution of the vector field and
Faraday’s law. This is a non-trivial task, as

the problem is inherently under-determined,
and the cadence and quality of the magne-
tograms may vary. There is a growing num-
ber of inversion techniques that address this
problem (Fisher et al. 2009; Ravindra et al.
2008; Schuck 2008; Georgoulis & LaBonte
2006; Welsch et al. 2004; Longcope 2004;
Kusano et al. 2002); each is capable of pro-
viding an inductive flowfield consistent with
the observations and suitable for incorporation
into an MHD model.

Next, we must generate an initial near-
equilibrium or steady state atmosphere from
the first magnetogram of the timeseries, and
choose an appropriate set of exterior bound-
ary conditions. The challenge here is to mini-
mize perpendicular currents within the compu-
tational volume, and to provide coronal bound-
ary conditions that minimize forces resulting
from magnetic tension. This way, the forces
introduced into the model photosphere are the
principle drivers of the system.

As a starting point, we generate a non-
constant-α force-free extrapolation using a
variation of the optimization technique of
Wheatland et al. (2000). Given the photo-
spheric magnetogram and a choice of external
boundary conditions, this procedure minimizes
the functional

f =

∫
dV

( |(∇ × B)×B|2
B2 + |∇ · B|2

)
, (16)

and generates an initial magnetic configura-
tion.

Unfortunately, the reality is that the pho-
tosphere is often far from force-free, making
the mathematical problem of generating per-
fectly force-free equilibia ill-posed. While the
optimization technique performs well relative
to other methods (see Schrijver et al. 2006), it
still cannot be expected to fully converge to
an equilibrium state without altering the trans-
verse magnetic field at the photospheric bound-
ary. We therefore use the optimization method
to generate an initial starting point for an MHD
relaxation. The above functional need not be
vanishingly small in every mesh element, since
the MHD code will diffuse away any signifi-
cant divergence error, and clean up any noisy,
unphysical currents near the lower boundary
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Fig. 4. The three components of the magnetic field (from left to right Bz, Bx, and By) from the early stages
of a 3D RADMHD simulation of NOAA AR 8210. The top row shows a horizontal slice through the model
photosphere, and the bottom row shows the magnetic field through a horizontal slice corresponding to the
model chromosphere. The top row mirrors the vector magnetic field as measured by the IVM vector magne-
tograph at Mees Solar Observatory on Haleakala, and the bottom row represents a synthetic chromospheric
magnetogram as predicted by the MHD model.

(see Fig. 4). In practice, this is done by ar-
tificially damping fast-moving waves and al-
lowing the system to slowly evolve to a near-
equilibrium state. Of course, the resulting at-
mosphere is not expected to be force-free near
the photosphere. The currents in the system
are, however, more physical since they were
evolved via the MHD system of conservation
equations rather than by attempting to mini-
mize the functional of Eq. 16. Our purpose here
is not to find a perfectly stable equilibrium so-
lution. In fact, such a state may not exist, given
the vector magnetogram and choice of bound-
ary conditions. We are simply striving for an
initial atmosphere that is not so vastly out of
force balance that motions at the model photo-
sphere are immediately overwhelmed by other
less relevant processes. Once this is achieved,
we drive the atmosphere in the following way.

First, we define the physical contribution to the
force as that described by the MHD momen-
tum conservation equation (see Abbett 2007
for details),

F ≡ −∇·
[
ρuu+

(
p +

B2

8π

)
I−BB

4π
−Π

]
+ρg (17)

We then define the forces implied by the data,

Fdata ≡ ∂ρuinv

∂t
. (18)

Here, uinv refers to the inductive flow field ob-
tained through one of the many velocity inver-
sion techniques (see Welsch et al. 2007).

Then in a thin volume corresponding to the
model’s photosphere, we recast the momentum
equation in the following form:

∂ρu
∂t

∣∣∣∣
phot

= ξ(Fdata)⊥ + (1 − ξ) (F)⊥ + (F)|| (19)
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where the parallel and perpendicular subscripts
denote the forces parallel or perpendicular to
the direction of the magnetic field. Here, 0 <
ξ < 1 represents a “confidence matrix” de-
fined at each mesh element within the pho-
tospheric volume. It is easy to see that when
ξ = 1, the forces perpendicular to the magnetic
field within the model photosphere are deter-
mined entirely by the data, and when ξ = 0, the
photospheric layer evolves as the MHD sys-
tem normally would in the absence of any ob-
servational forcing. Since flows parallel to the
field do not affect magnetic evolution, we al-
low them to evolve in an unconstrained fash-
ion. All other independent variables evolve
as prescribed by the MHD system of equa-
tions including the magnetic field. Recall, uinv
is designed to be consistent with of the ob-
served evolution of one or more components of
the photospheric magnetic field (depending on
the inversion method used) and, in principle,
should drive the photospheric field in a man-
ner consistent with the timeseries of magne-
tograms.

4. Concluding remarks

We have developed a rudimentary means of
assimilating a time series of vector magne-
tograms into the interior volume of an MHD
model in a manner that is stable, and does not
over-specify the problem. We are currently us-
ing this assimilative technique to incorporate
a timeseries of vector magnetograms into a
120 Mm3 RADMHD model atmosphere that
contains a model photosphere, chromosphere,
transition region and corona. The IVM data we
are using is a four hour timeseries from NOAA
AR 8210 – a well-studied flare and CME-
producing active region. The simulations are
in their preliminary stages, and we hope to re-
port on this work in the near future. In addition,
we have presented a computationally efficient
method of approximating optically-thick radia-
tive cooling in our RADMHD quiet Sun mod-
els. The treatment improves upon the method
of Abbett (2007), while still retaining the ef-
ficiency necessary to allow for large, active

region-scale, convection zone-to-corona com-
putational domains. Our simulations are pro-
gressing, and we are currently evaluating the
efficacy and reliability of the new method. We
are optimistic that each of these methods will
improve the realism and utility of our current
suite of numerical models.
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